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T
he ease with which we store and transmit images in modern-day appli-
cations would be unthinkable without compression. Image compression
algorithms can reduce data sets by orders of magnitude, making sys-
tems that acquire extremely high-resolution images (billions or even
trillions of pixels) feasible.

There is an extensive body of literature on image compression, but the cen-
tral concept is straightforward: we transform the image into an appropriate basis
and then code only the important expansion coefficients. The crux is finding a
good transform, a problem that has been studied extensively from both a theo-
retical [14] and practical [25] standpoint. The most notable product of this
research is the wavelet transform [9], [16]; switching from sinusoid-based repre-
sentations to wavelets marked a watershed in image compression and is the
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essential difference between the classical JPEG [18] and
modern JPEG-2000 [22] standards.

Image compression algorithms convert high-resolution
images into a relatively small bit streams (while keeping the
essential features intact), in effect turning a large digital data set
into a substantially smaller one. But is there a way to avoid the
large digital data set to begin with? Is there a way we can build
the data compression directly into the acquisition? The answer
is yes, and is what compressive sampling (CS) is all about.

To begin, we need to generalize our notion of “sampling” an
image. Instead of collecting point evaluations of the image X at
distinct locations, or averages over small areas (pixels), each
measurement yk in our acquisition system is an inner product
against a different test function φk:

y1 = 〈X, φ1〉, y2 = 〈X, φ 2〉, . . . , ym = 〈X, φm〉. (1)

We note here that our entire discussion in this article (and the
majority of the work to date in the field of CS) will revolve
around finite dimensional signals
and images. To make the transi-
tion to acquisition of continuous-
time (and -space) signals, we
would choose a discretization
space on which to apply the dis-
crete theory. For example, we
might assume that the image is
(or can very closely approximated
by) a gridded array of n pixels. The
test functions φk, which would also be pixelated, then give us
measurements of the projection of the continuous image onto
this discretization space.

The choice of the φk allows us to choose in which domain we
gather information about the image. For example, if the φk are
sinusoids at different frequencies, we are essentially collecting
Fourier coefficients (as in magnetic resonance imaging), if they
are delta ridges, we are observing line integrals (as in tomogra-
phy), and if they are indicator functions on squares, we are back
to collecting pixels (as in a standard digital camera). Imagers
that take these generalized kinds of samples are often referred to
as coded imaging systems, as the measurements y1, . . . , ym are
in some sense a coded version of the image X rather than direct
observations. For now we will assume that we have complete
control over which φk to use—description of real coded imaging
systems that implement various types of measurements can be
found in [15], [19], and [23].

How then should we choose the φk to minimize the number
of measurements m we need to reconstruct X faithfully? One
idea is to match these test functions to the image structure.
That is, we try to make the measurements in the same domain
in which we would compress the image. For example, if the φk

are cosines at a series of “low-pass” frequencies, the imaging
system is computing the important discrete cosine transform
(DCT) coefficients (the first step of JPEG compression) up front.
With the φk matched to the signal structure, we reconstruct our

image using least squares, finding the closest image that match-
es the observed projection onto the span of {φ1, . . . , φm}:

X̂ = �∗(��∗)−1 y, (2)

where � is the linear operator that maps an image to a set of m
measurements, �∗ is its adjoint, and y is the m-vector of
observed values (we can think of the φk as the rows of �). The
effectiveness of this coded imaging strategy, along with the lin-
ear reconstruction procedure (2), is determined by how well
images of interest can be approximated in the fixed linear sub-
space spanned by the φk. Speaking qualitatively, an acquisition
device with the φk as low-frequency sinusoids will perform on
par with the JPEG compression standard.

Although linear-coded imaging systems of this type have
the potential to outperform traditional systems, they have a
severe shortcoming. They cannot adapt to changes in struc-
ture from one image to the next; they are stuck recording the
same m transform coefficients for every image. This problem

becomes particularly pronounced
when we consider using wavelets
for the φk above. The entire
advantage wavelets hold over
Fourier-based representations
comes from the fact that they
automatically adapt to singulari-
ties in the image; important
wavelet coefficients tend to clus-
ter around edge contours, while

large smooth regions can be built up with relatively few terms,
facts that modern compression algorithms take full advantage
of. While the wavelet transform is, of course, linear and the
approximate image the compression algorithm produces can
be written as a linear combination of wavelet basis functions,
which wavelets are included in this approximation changes
from image to image. (In mathematics, approximating a func-
tion by projecting it onto a fixed linear subspace is called lin-
ear approximation while projecting onto a linear subspace
adapted to the function is called nonlinear approximation. See
[10] for a beautiful introduction.)

Since they have the entire image (or at least a high-resolu-
tion version of it) and its transform to examine at their leisure,
image compression algorithms can incorporate these adapta-
tions with ease [21]. The same luxury is not afforded to an
acquisition system, as there is no way to judge which transform
coefficients are important until after the image is formed. 

This brings us to our next question: Is there any way to
match the adaptive approximation performance with a pre-
determined set of linear measurements? Surprisingly, there is.
Even more surprising is the way that the measurements
should be taken. Instead of carefully matching the test func-
tions φk to the structure in the image, the ideal thing to do is
the exact opposite. The φk should be completely unstructured
and look more like random noise than any feature we would
expect to see in our image.

THE CENTRAL CONCEPT 
IS STRAIGHTFORWARD: WE

TRANSFORM THE IMAGE INTO AN
APPROPRIATE BASIS AND THEN
CODE ONLY THE IMPORTANT
EXPANSION COEFFICIENTS.



The central result of CS [3]–[5], [11] is that from m of these
noise-like, incoherent measurements, we can reconstruct the
image as well as if we had observed the m/ log n most important
wavelet coefficients, where n is the number of pixels in our
recovery (we can think of n as being the target resolution). (For
the sake of the exposition, we are forgoing all constants in this
part of the discussion.) In practice, the story is even better: from
m measurements, we are usually
able to reconstruct an image com-
parable to the best m/5 term
wavelet approximation. To put
this in context, consider that for a
typical n-pixel image, an almost
lossless approximation can be
constructed from just 5% (.05n)
of the wavelet coefficients. Then from 0.25n measurements we
can reconstruct an image that is almost as good as if we had
measured each of the n pixels individually, a savings of 75%.
Thus the number of measurements we need depends more on
the inherent complexity of the image (in the wavelet domain)
than on the number of pixels we wish to reconstruct.
Furthermore, there is nothing exceptional about the wavelet
transform, this strategy applies to nonlinear approximation in
any transform domain. 

While the measurements remain linear (they are the same
as in (1), with noise-like pseudorandom φk), the CS recovery
procedure is decidedly nonlinear. It has to be, as I imagine
there is no way I could convince the reader that the linear
recovery in (2) will be more effective with random noise than
with low-frequency sinusoids. Given the m-vector of measure-
ments y = �X , the recovery algorithm consists of solving the
convex program

min
X ′ ‖�∗ X ′‖�1 subject to �X ′ = y. (3)

Let us describe what (3) is doing in words before turning to
the mathematics: It is searching for the n-pixel image with
the sparsest wavelet transform that explains the measure-

ments we have observed. (Again, we can replace the wavelet
transform here with any suitable transform in which images
we are interested in acquiring are compressible.) The con-
straints �X ′ = y ask that we only consider images that
would produce the same measurements y which we have
observed; the operator �∗ takes an n-point wavelet transform
of a candidate image I ′ , and the �1 norm of the resulting n-

vector w = �∗ X ′ , is simply the
sum-of-magnitudes

‖w‖�1 =
n∑

i=1

|w(i)|.

As we will discuss in detail below,
we use the �1 norm in (3) because

a) sparse signals have small �1 norms relative to their energy,
and b) it is convex, which makes the optimization problem com-
putationally tractable. Reconstruction using (3) is effective for
the same reason wavelet-based image compression algorithms
are effective: it is making the most of the information it has by
exploiting the fact that images tend to have sparse wavelet
transforms.

Solving (3) accomplishes two things: it locates the impor-
tant transform coefficients and reconstructs their values. It is
in this first task that the incoherence of the measurements
comes into play. While we know that the image we are trying
to acquire is sparse in the wavelet domain, it is critical that
our measurement functions (and linear combinations thereof)
not be. Figure 1 illustrates this point: if we don’t know where
the important values are, sampling the transform coefficients
in (a) directly (which is the same as using wavelets for the φk

in our discussion above) will be for the most part a fruitless
effort, as most of the time we will see values that are very close
to zero. If instead we take global combinations of the trans-
form coefficients, an effect achieved by using incoherent φk as
illustrated in (b), we “pick up” a little bit of information about
the sparse coefficient sequence with each measurement. The
program (3) then “triangulates” the locations of important

transform coefficients and their values.
The concepts in the preceding para-

graph are made precise by establishing
certain uncertainty principles between
the domain in which the image is
sparse and the domain in which it is
being measured. While we can expect
that the signal is concentrated on a
somewhat arbitrary and relatively small
set in the � domain, the measure-
ments will be spread out.

We will explain exactly what we mean
by an uncertainty principle and explore
its ramifications later. Before going fur-
ther, however, it will probably help to see
a numerical experiment that demon-
strates the potential of CS. 

[FIG1] Sampling a sparse vector. (a) An example of a very sparse vector. If we sample this
vector directly with no knowledge of which components are active, we will see nothing
most of the time. (b) Examples of pseudorandom, incoherent test vectors φk. With each
inner product of a test vector from (b), we pick up a little bit of information about (a).

(b)(a)
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CS IN ACTION
In Figure 2, we see the famous Camera Man image. Of course,
this image has already been acquired and is sitting in “high res-
olution” (here a rather modest
256 × 256) pixelated form on my
hard drive. But we can use this
high-resolution version to simu-
late how well we could have
acquired it from measurement
functions formed by linear combi-
nations of these pixels (i.e., the φk in (1) are piecewise constant
over the pixel regions). Taking m of these measurements is
equivalent to applying an m × 65, 536 matrix � to the 65,536
dimensional vector X representing the (rasterized) high-resolu-
tion image.

We will compare two different coded imaging strategies.
(The MATLAB code that reproduces the results in this section
can be downloaded from http:// users.ece.gatech.edu/~
justin/spmag.) The first scheme, which we will call simply
“linear imaging,” measures low-pass DCT coefficients and
reconstructs using the pseudo-inverse as in (2). The order in
which the DCT coefficients are acquired is the same zig-zag-
ging pattern used by the JPEG compression standard [18].
(We are not breaking the image into sub-blocks here as JPEG
does, but the results do not change significantly if we do.)
The results of this strategy are shown as the blue curve in
Figure 2(a). The coarse-scale features of the image are
acquired very quickly: we capture about 97% of the energy of
X in the first 1,000 (1.5% of 65,536) DCT coefficients. The
curve levels off after this, suggesting that the linear imaging
scheme is very good at getting a rough sketch of the image
but less efficient at filling in the details. 

The second scheme, which we call “compressive imaging,”
again sketches the image by measuring the first 1,000 DCT

coefficients but then switches to pseudorandom φk to acquire
the details. The φk used here are binary-valued functions
called noiselets [8]. These particular functions have a num-

ber of desirable properties (see
[2] for a discussion), but for our
purposes here we can just view
the measurements 〈X, φk〉 as ran-
domly changing the signs of each
of the pixels of X and then sum-
ming the results.  We stress,

though, that the exact nature of the measurements is not too
important, and we achieve very similar results with many dif-
ferent choices of incoherent test functions. 

From this combination of low-pass DCT and noiselet coef-
ficients, we reconstruct the image using a variant of (3).
Instead of minimizing the �1 norm of the wavelet transform,
we minimize the total variation, which can be interpreted as
the �1 norm of the (appropriately discretized) gradient (we are
taking the magnitude of a two-vector at each point in the
image, rather than a scalar)

min
X ′

∑

i, j

∣∣(∇ X ′)i, j
∣∣ subject to �X ′ = y. (4)

The program (4) is in much the same spirit as (3) but tends to
work a little better in practice.

The results for the compressive imaging strategy are plotted
as the red curve in Figure 2(a). The difference between compres-
sive and linear imaging is dramatic; not only are the reconstruc-
tions uniformly better, but they are improving at a faster rate as
measurements are added (just as the theory predicts). An exam-
ple of an image acquired from 21,000 measurements (about
32% of the number of pixels) for both strategies is also shown in
Figure 2. Note in particular that the CI reconstruction is cleaner
around the edges than the linear reconstruction.

[FIG2] Coded imaging simulation. (a) Recovery error versus number of measurements for linear DCT acquisition (blue), compressive
imaging (red), and DCT imaging augmented with total-variation minimization (green). The error is measured using the standard
definition of peak signal-to-noise ratio: PSNR = 20 log10(255· 256/‖X − X̃‖2). (b) Image recovered using linear DCT acquisition with
21,000 measurements. (c) Image recovered using compressive imaging from 1,000 DCT and 20,000 noiselet measurements.
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There are really two innovations in the compressive
imaging scheme: we are using pseudorandom measurements
in place of low frequency sinusoids, and the nonlinear
reconstruction given by (4) which is designed to favor our
notion of image structure. It is fair to ask if the gains from
compressive imaging would disappear if we were to use (4)
instead of the pseudoinverse (2) to reconstruct the image
from the DCT measurements. (Making the switch the other
way, using the pseudoinverse to reconstruct from the inco-
herent measurements, would be a complete disaster.) They
do not, as shown by the green
curve in Figure 2(a). Using the
nonlinear reconstruction pro-
gram boosts the performance of
the DCT imaging system, but
the details are still coming in
more slowly than with the inco-
herent measurements. 

UNCERTAINLY PRINCIPLES AND SPARSE RECOVERY
We turn briefly away from imaging to consider the follow-
ing idealized problem. Say that α0 ∈ Rn is a sparse vector in
that only a small number, which we will call S, of its n com-
ponents are nonzero (later we will consider such α0 as the
transform coefficients of an image). We wish to acquire α0

using as few linear measurements (inner products with test
functions as in (1)) as possible. We know that α0 is sparse,
but have no information whatsoever about which compo-
nents happen to be nonzero. 

One strategy for acquiring α0 is to sample it directly,
recording α0(i ) for different location indices i. If we knew
the locations of the S active components, we could simply
take S samples at these locations and be done. If, however,
we do not know anything about which components are
active, sampling α0 directly is a bad idea. Since S � n,
most of our samples will be zero, telling us very little
about which components are active and nothing at all
about what values those active components have. In gener-
al, we will have to take all n samples to make sure that
nothing is missing.

A better idea is to measure a series of random combinations
of the entries of α0. Instead of taking samples, we observe inner
products of α0 against a series of random codes. Our test vectors
φ1, φ2, . . . , φm will be binary valued and have unit norm, tak-
ing values of +1/

√
n and −1/

√
n with equal probability; exam-

ples are shown in Figure 1. The idea here is that since the
measurements are global, we learn something new about the
sparse vector with every measurement.

This random sensing strategy works because each sparse sig-
nal will have a unique set of measurements. We can make this
mathematically precise as follows. Stack the m random test vec-
tors φ1, φ2, . . . , φm on top of one another as rows in the m × n
matrix �. If the number of rows obeys

m � S log n, (5)

then with probability very, very close to one, the matrix obeys
what is known as a uniform uncertainty principle (UUP) [5].
(Here we mean that m ≥ Const · S log for some known con-
stant. We are not trying to hide anything using this notation,
the constants involved are almost always small; see in partic-
ular [13].) The UUP states that for any S-sparse vector h, the
energy of the measurements �h will be comparable to the
energy of h itself:

1
2

· m
n

· ‖h‖2
2 ≤ ‖�h‖2

2 ≤ 3
2

· m
n

· ‖h‖2
2. (6)

We call this is an uncertainty
principle because the proportion
of the energy of h that appears as
energy in the measurements is
roughly the same as the under-
sampling ratio m/n. While h is
entirely concentrated on a small
set, it is spread out more or less

evenly in the measurement domain. 
To see how the UUP relates to sparse recovery, suppose

that (6) holds for sets of size 2S [we will have to double the
constant in (5)]. We measure our S sparse vector as above:
y = �α0 . Is there any other S-sparse (or sparser) vector
α′ 	= α0 that has the same measurements? The answer is no.
If there were such a vector, then the difference h = α0 − α′
would be 2S-sparse and have �h = 0, two properties made
incompatible by the UUP.

To recover an S sparse α0 from y = �α0 (inverting the
measurement process), we solve an optimization problem. From
the arguments above, we know that α0 is the sparsest vector
which maps to y. Thus it must be the solution to the following
optimization problem:

min
α

#{i : α(i ) 	= 0} subject to �α = y. (7)

The functional #{i : α(i ) 	= 0} is simply the number of nonzero
terms in the candidate vector α; in the literature this is some-
time referred to as the �0 norm (although is not a vector norm,
strictly speaking).

The problem with (7) is that solving it directly is infeasible. It
is combinatorial and NP-hard [17]. Fortunately, there is a con-
vex program that works almost as well:

min
α

‖α‖�1 subject to �α = y. (8)

The only difference between (7) and (8) is the substitution of
sum of magnitudes in place of size of support. But (8) is far easi-
er to solve; it can be recast as a linear program [7] and solved
using any number of modern techniques [1].

Even though (7) and (8) are fundamentally different,
they produce the same answer in many interesting situa-
tions. Under essentially the same assumptions (the constant
in (5) is slightly larger), the program (8) will also recover
an S-sparse α0 from its measurements y = �α0 . This fact is
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of utmost importance, and it is what promotes sparse recov-
ery from an intellectual curiosity to an idea which can have
broad impact. 

THE GEOMETRY OF �1

MINIMIZATION
We can get some geometric intu-
ition for why �1 is an effective
substitute for sparsity by turning
to the sketches in Figure 3. Part
(a) illustrates the �1 ball in R2 of
a certain radius. Note that it is
anisotropic; it is “pointy” along the axes (compare to the stan-
dard Euclidean �2 ball, which is spherical and thus completely
isotrpoic). Part (b) diagrams the �1 recovery program (also in
R2): the point labeled α0 is a “sparse” vector (only one of its
components are nonzero) of which we make one measure-
ment; the line labeled H is the set of all α that share the same
measurement value.

The task for (8) is to pick out the point on this line with min-
imum �1 norm. To visualize how (8) accomplishes this, imagine
taking an �1 ball of tiny radius and gradually expanding it until
it bumps into H. This first point of intersection is by definition
the vector that solves (8). The combination of the anisotropy of
the �1 ball and the flatness of the space H results in this inter-
section occurring at one of the points, precisely where sparse
signals are located.

Compare to what would happen if we replaced the �1 norm
with the �2 norm (which would make the recovery a least-
squares problem). Figure 3(c) replaces the diamond-shaped �1

ball with the spherical and perfectly isotropic �2 ball. We can
see that the point of first intersection of H and the expanding
�2 ball does not have to be sparse at all. In high dimensions
this difference becomes very dramatic. Despite the seemingly
innocuous difference in the definitions of the �1 and �2 norms
(sum of magnitudes versus sum of magnitudes squared), they
are totally different creatures. 

�1 RECOVERY AND UNCERTAINTY PRINCIPLES
The precise arguments demonstrating that (8) recovers sparse
signals (given that � obeys the uncertainty principle) are a

little more involved than those
we made for the combinatorial
recovery below (7), but they have
much of the same flavor. We will
give only an outline of the rea-
soning here; interested readers
can consult [4], [12], and [24] for
the details. We want to show that
if α0 is sparse, then for all α′

with ‖α′‖�1 ≤ ‖α0‖�1 we have �α ′ �= �α0. Returning to our
diagram, we can see that (8) will recover α0 if the line H does
not “cut through” the �1 ball at α0. Another way to say this is
that for every h in the cone of descent from the facet of the �1

ball on which α0 lives (meaning ‖α0 + h‖�1 ≤ ‖α0‖�1 ), we will
have �h �= 0.

The key, just as in the combinatorial case, is that all
descent vectors h are concentrated on the same (relatively
small) set as α0. Of course, they do not have to be supported
exactly on this set, but the “pointiness” of the �1 ball at the
low-dimensional facet on which α0 lives severely constrains
how descent vectors can behave. We have seen that (6) directly
implies that vectors supported on sets with size proportional
to S cannot be in the null space of �; showing that this
extends to vectors which are merely concentrated on such sets
is what [4], [12], and [24] accomplish.

RECOVERY OF SPARSE TRANSFORMS
In general, we are not as interested in reconstructing signals
that are by themselves sparse but rather are sparse in some
known transform domain. Making this transition is straightfor-
ward; instead of (8), we use (3) in the introduction, with an
orthonormal � representing the transform in which we expect
our signals of interest to be sparse. Of course, now we need to
take measurements that are incoherent in the � domain;

[FIG3] Geometry of �1 recovery. (a) �1 ball of radius r; the orange region contains all α ∈ R
2 such that |α(1)| + |α(2)| ≤ r. (b) Solving the

min −�1 problem (8) allows us to recover a sparse α0 from y = �α0, as the anisotropy of the �1 ball favors sparse vectors. Note that the
descent vectors h pointing into the �1 ball from α0 will be concentrated on the support of α0. (c) Minimizing the �2 norm does not
recover α0. Since the �2 ball is isotropic, the min −�2 solution α�

�2
will in general not be sparse at all.
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instead of measuring random combinations of pixels, we
should, strictly speaking, measure random combinations of
basis functions. It is often the case, though, that measurements
of random combinations of the pixels behave enough like ran-
dom combinations of the basis functions so that they are func-
tionally indistinguishable in practice.

DISCUSSION
This short, conversational article is meant as an introduction to
CS and recovery via convex programming. In many places we
have sacrificed precision to develop intuition. The mathematical
theory underlying CS, however, is deep and beautiful, and draws
from diverse fields including harmonic analysis, convex opti-
mization, random matrix theory, statistics, approximation theo-
ry, and theoretical computer science. To conclude, we will briefly
touch on several interesting topics we did not discuss above.

FIXED MEASUREMENT SYSTEMS
We do not always have complete control over the types of meas-
urements we make. If our equipment make measurements in
the U domain and our model is that signals are sparse in the �
domain, the number of samples we need to reconstruct now
depends on how different the U and � domains are. Recovery
results exist [2], [20] that are similar to those using random
matrices, but with the additional dependence on a coherence
parameter that quantifies how concentrated elements of ψ are
in the U domain (and vice versa).

STABILITY
In practice, signals and images are never perfectly sparse, and
we can always expect to have some amount of measurement
error. Because the recovery procedure is nonlinear, there is a
natural worry that it is unstable. This is not the case at all. The
program (3) does a very good job of recovering signals that are
only approximately sparse [4], [5]. When the measurements y
are perturbed, there are various ways to relax [4], [6], [24] the
program (3) so that the recovery error is on the same order as
the measurement error.

COMPUTATIONS
While the actual acquisition process (i.e., the “analog encod-
ing”) is trivial—we simply take inner products—solving the
recovery program is not. Fortunately, there have been drastic
advances in the field of convex optimization [1] that make
solving these types of programs feasible on the scale that we
are interested in (hundreds of thousands of measurements
and millions of pixels). There is a good deal of computation
involved in these algorithms, but it manageable. A good rule
of thumb for these methods is that solving the �1 minimiza-
tion program (3) is about 30–50 times as expensive as solving
the least-squares problem (2).

Finally, although we have couched the entire discussion in
this paper in terms of imaging, CS is applicable to a wide variety
of problems. The moral is very general: a good signal represen-
tation can fundamentally aid the acquisition process. 
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