Departamento de electronica Universidad de Alcala

Líneas de investigación

Accede a información sobre la estructura de la actividad investigadora de Geintra.

Trabaja con nosotros

Accede a nuestra oferta actual de becas, tesis doctorales, contratos y trabajos fin de carrera.

Contacta con el grupo

Si desea contactar con nosotros, puede usar varios medios.

    Robust People Detection and Tracking from an overhead Time-of-Flight Camera

    TitleRobust People Detection and Tracking from an overhead Time-of-Flight Camera
    Publication TypeConference Paper
    Año de publicación2017
    AutoresFernandez-Rincon, A, Fuentes, D, Losada-Gutiérrez, C, Marron, M, Luna, CA, Macias-Guarasa, J, Mazo, M
    Idioma de publicaciónEnglish
    Conference Name12th International Conference on Computer Vision Theory and Applications.
    Conference LocationPorto, Portugal
    Fecha de publicación03/2017
    Numero ISBN978-989-758-225-7
    Palabras clavePeople Detection, Time-of-Flight, ToF Camera, ToF Camera., Tracking

    In this paper we describe a system for robust detection of people in a scene, by using an overhead Time of Flight (ToF) camera. The proposal addresses the problem of robust detection of people, by three means: a carefully designed algorithm to select regions of interest as candidates to belong to people; the generation of a robust feature vector that efficiently model the human upper body; and a people classification stage, to allow robust discrimination of people and other objects in the scene. The proposal also includes a particle filter tracker to allow people identification and tracking. Two classifiers are evaluated, based on Principal Component Analysis (PCA), and Support Vector Machines (SVM). The evaluation is carried out on a subset of a carefully designed dataset with a broad variety of conditions, providing results comparing the PCA and SVM approaches, and also the performance impact of the tracker, with satisfactory results.

    robustpeopledetectionandtrackingfromanoverhead-visapp-2017.pdf960.53 KB