Geintra

Departamento de electronica Universidad de Alcala

Líneas de investigación

Accede a información sobre la estructura de la actividad investigadora de Geintra.

Trabaja con nosotros

Accede a nuestra oferta actual de becas, tesis doctorales, contratos y trabajos fin de carrera.

Contacta con el grupo

Si desea contactar con nosotros, puede usar varios medios.

    LPS Auto-Calibration Algorithm with Predetermination of Optimal Zones

    TitleLPS Auto-Calibration Algorithm with Predetermination of Optimal Zones
    Publication TypeJournal Article
    Año de publicación2011
    AutoresRuiz, FD, Ureña, J, Garcia, JC, Jiménez, A, Hernández, Á, García, JJ
    Idioma de publicaciónEnglish
    JournalSensors
    Volumen11
    Número11
    Páginas10398 - 10414
    Fecha de publicación11/2011
    Palabras claveLPS; autocalibration; spherical and hyperbolic trilateration; optimal test points
    ISSN1424-8220
    DOI10.3390/s111110398
    Abstract

    Accurate coordinates for active beacons placed in the environment are required in Local Positioning Systems (LPS). These coordinates and the distances (or differences of distances) measured between the beacons and the mobile node to be localized are inputs to most trilateration algorithms. As a first approximation, such coordinates are obtained by means of manual measurements (a time-consuming and non-flexible method), or by using a calibration algorithm (i.e., automatic determination of beacon coordinates from ad hoc measurements). This paper presents a method to calibrate the beacons’ positions in a LPS using a mobile receiver. The method has been developed for both, spherical and hyperbolic trilateration. The location of only three test points must be known a priori, while the position of the other test points can be unknown. Furthermore, the paper describes a procedure to estimate the optimal positions, or approximate areas in the coverage zone, where the test-points necessary to calibrate the ultrasonic LPS should be placed. Simulation and experimental results show the improvement achieved when these optimal test-points are used instead of randomly selected ones.

    DOI10.3390/s111110398